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Abstract

A key problem in domain adaptation is deter-
mining what to transfer across different do-
mains. We propose a data-driven method to
represent these changes across multiple source
domains and perform unsupervised domain
adaptation. We assume that the joint distri-
butions follow a specific generating process
and have a small number of identifiable chang-
ing parameters, and develop a data-driven
method to identify the changing parameters
by learning low-dimensional representations
of the changing class-conditional distributions
across multiple source domains. The learned
low-dimensional representations enable us to
reconstruct the target-domain joint distribu-
tion from unlabeled target-domain data, and
further enable predicting the labels in the tar-
get domain. We demonstrate the efficacy of
this method by conducting experiments on
synthetic and real datasets.

1 INTRODUCTION

In recent years machine learning techniques have be-
come ubiquitous in solving real-world problems. For
many of these applications obtaining new labeled data
can be difficult, time-consuming, or expensive. More-
over, the training and test data are collected during
different time periods and/or under different condi-
tions, often yielding a shift in the distribution across
datasets. For example, the distribution of medical data
regarding a particular disease may vary from patient
to patient because of heritable factors and different
laboratory and measurement conditions. Furthermore,
image datasets are collected in more than one setting,
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with different viewpoints and illumination conditions.
Suppose we have one or more labeled datasets called
source domains, and a new unlabeled dataset called
target domain which has a different distribution from
the source domain(s). Domain adaptation is the prob-
lem of accounting for the shift in distribution across
domains such that relevant information is transferred
from source domain(s) to the target domain so as to
predict the target domain labels.

Let X denote the features and Y denote the labels. In
the multiple-source domain adaptation setting, there
are M > 1 source domains in the training data gen-
erated from multiple respective joint distributions
P

(1)
XY , ..., P

(M)
XY . The goal is to learn a classifier for

a new target domain with unlabeled data generated
from P

T
X . To enable successful domain transfer, one

needs to make some assumptions about the joint dis-
tribution and take into account the generating process
of the data. Following [1, 2, 3], we assume that the
causal direction is Y ! X; then PX|Y corresponds
to the causal mechanism that generates features from
the label. According to the modularity property of
a causal model, Y ! X implies that PY and PX|Y
change independently across domains [4, 5, 6]. The
generating process is illustrated on Figure 1. For ex-
ample, in image classification, the class label can be
considered as the cause of images. If we change the
label distribution, this would not change the causal
mechanism PX|Y that generates images from labels.
The change of PX|Y can be due to other factors such
as illumination and viewpoint. Thus, the factorization
of the joint distribution following the causal direction
(given byPY PX|Y ) is more favorable, because the other
factorization yields factors PX and PY |X which arise
from independent modules PY and PX|Y (via Bayes
rule), and are thus coupled and change dependently
across domains in the generic case.

Determination of what information to transfer from
source domains to the target is a crucial issue in do-
main adaptation. In this paper, we propose a non-
parametric approach to capture distribution changes
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and recover the target domain joint distribution. Since
the causal direction is Y ! X, it is not surprising
that the changes in the data generating process, PX|Y ,
are usually simple and relatively easy to model. More
specifically, we assume an infinite-dimensional non-
parametric paradigm for the causal mechanism of all
domains, i.e., {PX|Y ;⇥ : ⇥ 2 ⇥1}, where ⇥1 is an
infinite-dimensional space of parameters. We show
that if the number of changing parameters in PX|Y is
small, P (1)

X|Y , · · · , P (M)
X|Y lie in a low-dimensional man-

ifold. Given enough source domains, we can identify
the manifold of the d changing parameters by learning
low-dimensional representations of the distributions
P

(1)
X|Y , · · · , P (M)

X|Y . Furthermore, we can make use of
the low-dimensional representation to reconstruct the
target-domain causal mechanism P

T
X|Y , which can then

be used to construct the target-domain classifier.

Therefore, the motivation of our approach is two-fold:
(1) Working with a plausible representation for the
generating process of the data allows us to observe a
low-dimensional change across domains. (2) When fac-
torized according to the generative process, the factors
of the distribution (i.e. PY and PX|Y ) change indepen-
dently, and their respective low-dimensional changes
across domains can be learned separately. The pro-
posed method leverages these properties to extract the
low-dimensional representations of the changing param-
eters across domains, and make use of it for predicting
target-domain labels.

1.1 RELATED WORK

Classical single-source domain adaptation focuses on
the setting where there are two domains, one labeled
training dataset and one unlabeled test dataset (termed
source and target domain), arising from two joint dis-
tributions P

S
X,Y and P

T
X,Y , respectively. In order for

classification in the test domain to be feasible, there
must be some connection between the source and target
domains, and this connection is reflected in the respec-
tive joint distributions. Therefore, domain adaptation
approaches generally focus on understanding what as-
pects of the joint distribution change and leveraging
this knowledge to account for the difference and con-
struct an appropriate hypothesis in the target domain.
Single-source domain adaptation has been extensively
studied, with some of its theoretical underpinnings
analyzed in [7, 8] and [9].

When considering the change of PXY across domains,
prior approaches generally make some assumptions of
changes in its factors. Namely, a large body of work
has focused on the setting in which it is assumed that
PX changes and PY |X remains the same. Approaches
in this setting focus on minimizing the discrepancy

Y X

DomainDomain

Figure 1: Generating process Y ! X across domains
with domain index variable D = 1, ...,M

in PX between the weighted source domain and the
target. This setting is called covariate shift or sample
selection bias [10], and has been thoroughly studied in
[11, 12, 13]. However, in practice both PX and PY |X
can change across domains. An alternative assumption
to address this is the setting in which PY changes and
PX|Y remains the same, a setting termed target shift
[1] or prior probability shift [14, 15].

A particular line of work in single-source domain adap-
tation , [1, 3] makes assumptions on the generative
process across domains. With the assumption that the
labels generate the features (Y ! X) (which is rea-
sonable for many real-world scenarios including digit
recognition and medical)diagnosis , the authors work
with the factors PX|Y and PY , which are assumed to
change independently under this causal generative pro-
cess assumption [16]. This property is leveraged to
model the changes in PX|Y and PY separately, natu-
rally reducing the complexity of the problem.

Recently there have also been deep learning approaches
to single-source domain adaptation. They are based on
constructing domain adaptation layers with the aim of
learning transferable representations for classification
under the covariate shift setting [17, 18, 19, 20, 21].
Recent work by [22] focuses on the setting when multi-
ple components of the joint distribution may change,
and presents an architecture that extracts transferable
representations that reduce the discrepancy of the joint
distribution across domains.

There is a diverse body of work in multiple-source
domain adaptation. Similar to single domain adapta-
tion, [23] learns domain invariant components that are
shared by all domains and uses them for prediction in
the target domain. Other approaches focus on combin-
ing multiple hypotheses from the source domains and
weighing them based on the source-domain marginal
distributions, P

(1)
X , ..., P

(M)
X , [24], where the weights

are determined in various ways [25, 26, 27]. Another
approach [28] focuses on incorporating the marginal
distribution PX as an additional input of the classifier.
However, PX is an infinite-dimensional object, and per-
forming direct comparisons on it across domains may
lead to high estimation error and overfitting.

This fact is addressed by a method which assumes
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that the generating process is Y ! X and that the
change across domains follows the Conditional-Target
Shift setting (described above) [2]. This approach per-
forms domain adaptation by assuming that the tar-
get conditional distribution P

T
X|Y is a linear mixing of

the conditional distributions in the source domains
P

(1)
X|Y , ..., P

(M)
X|Y , and solving for the mixing weights.

However, the linear mixture assumption imposes a
rather strong constraint on the type of low-dimensional
changes that can be modeled and accounted for across
domains.

In our approach, we follow the same domain adapta-
tion setting, and we aim to automatically discover the
(potentially nonlinear) low-dimensional changes across
domains from data. This work consists of the following
main contributions:
(1) We present a data-driven approach to capturing
the low-dimensional manifold of the changes in the
distribution across domains.
(2) We show that if the source- and target-domain joint
distributions lie on a low-dimensional manifold, then
the joint distribution in the target domain P

T
XY can be

identified from the marginal distribution P

T
X .

(3) We provide an algorithm that makes use of the
low-dimensional manifold in order to reconstruct the
joint distribution in the target domain and perform
classification.

2 THEORETICAL FOUNDATION

Closely following the multiple-source settings of binary
classification of [28] and [23], we let X be the input
feature space, and let Y = {�1, 1} be the output space.
Let PX⇥Y be the family of joint distributions over
X ⇥ Y. Also, let PY and PX|Y be the respective fami-
lies of distributions. Let there be a distribution µ on
PX⇥Y , where P

(1)
XY , ..., P

(M)
XY are independent and iden-

tically distributed (i.i.d.) realizations from this family
for the source domains, and P

(T )
XY is the realization for

the target domain. In what follows, we shall describe
some of the mathematical tools required to represent
and make use of the changing parameters across source
domains.

2.1 REPRESENTING DISTRIBUTIONS IN
HILBERT SPACE

To perform domain adaptation, one needs to compare
probability distributions. Kernel mean embeddings
provide a convenient way to represent probability dis-
tributions as points in a Reproducing Kernel Hilbert
Space (RKHS) associated with some positive semi-
definite kernel, where the distance between them can
be easily computed [29].

random variable X Y

domain X Y
feature map  (x) ⇢(y)
kernel k(x, x0) l(y, y0)
i-th domain data point

x

(i)
y

(i)

empirical estimates of PX(x) and
PY (y)

P̂X(x) P̂Y (y)

kernel mean embedding on i-th
domain µ

(i)
X µ

(i)
Y

feature map on kernel mean em-
bedding �(µX)

Table 1: Notation used

Given a positive semi-definite kernel function k with
corresponding RKHS Hk and a feature map  : X !
Hk (s.t. for x1, x2 2 X , k(x1, x2) = h (x1), (x2)iHk),
the kernel mean embedding of the marginal distribution
PX is given by:

µX :=

Z

X
k(x, ·)dPX(x) = EPX [ (x)]. (1)

When k is a characteristic kernel (such as the Gaussian
kernel), µX is a point in Hk that captures all the mo-
ments of PX . A computationally convenient distance
metric between two distributions P (1)

X and P

(2)
X is their

Euclidean distance in the high-dimensional embedding
space, given by d(P (1)

X , P

(2)
X ) ⌘ ||µ(1)

X �µ

(2)
X ||2. It is also

known as the Maximum Mean Discrepancy (MMD) [30].
A consistent estimator of the kernel mean embedding
with finite n data points is µ̂X = 1

n

Pn
i=1  (xi).

While the marginal distribution is fully represented
as a single point in Hilbert space, the conditional dis-
tribution PXY is represented by a set of a family of
points in RKHS indexed by the conditioning variable
Y [31]. Namely, given a kernel l corresponding to a
feature map ⇢ : Y ! Hl and kernel k corresponding to
feature map  : X ! Hk, the conditional kernel mean
embedding is given by the operator UX|Y , a mapping
from Hl to Hk. Using this operator, the kernel sum
rule [31] can be used to express the embedding of the
marginal distribution PX in terms of the independently
changing factors PX|Y and PY : µX = UX|Y µY . For
a fixed value of the conditioning variable Y = c, the
kernel mean embedding of PX|Y=c is given by:

µX|Y=c :=

Z

X
k(x, ·)dPX|Y=c(x) = EPX|Y =c

[ (x)].

It can be shown that when Y is discrete and l(y1, y2) =
�(y1, y2) is the Kronecker delta kernel, UX|Y =
[µX|Y=1, ..., µX|Y=C ]

T . Furthermore, similarly to the
marginal case, the conditional kernel mean embedding
for a fixed Y = c can be estimated by µ̂X|Y=c =
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1
nc

Pnc

i=1  (xi), where nc is the number of observations
which have class c.

2.2 IDENTIFYING LOW-DIMENSIONAL
CHANGING PARAMETERS

The goal of our method is to mathematically express
and utilize the identifiable changing parameters in PXY

across domains via its independent factors, in our case
PX|Y and PY . We work with PX|Y and demonstrate
how this can be achieved. When performing kernel
mean embedding of the conditional distributions of
the features given a class label c in the the source
domains, P (1)

X|Y=c, ..., P
(M)
X|Y=c, we obtain M points in

Hk given by µ

(1)
X|Y=c, ..., µ

(M)
X|Y=c. Let there be a ker-

nel kµ with an RKHS Hkµ and a corresponding fea-
ture map � : Hk ! Hkµ . To extract the nonstation-
ary components (parameters) of these distributions,
one needs to find the transformations of the distribu-
tions with maximal variability. This can be achieved
by performing Kernel Principcal Component Analysis
(KPCA) [32] on µ

(1)
X|Y=c..., µ

(M)
X|Y=c, using an additional

kernel kµ, resulting in a centered kernel Gram Matrix:
K̃ij = kµ(µ

(i)
X|Y=c, µ

(j)
X|Y=c). To show that this is the

case, we first need the following lemma regarding linear
PCA.

Lemma 2 Let points �1, ...,�M be p-dimensional

vectors (where p could be infinite). Let �1, ...,�q be the

set of all non-zero eigenvalues after performing PCA

on these vectors. If P�(�i) is the projection of �i on

the principal eigenvectors corresponding to �1, ...,�q,

then �i 6= �j () P�(�i) 6= P�(�j).

The proof can be found in the supplementary
materials. Using this lemma we are now ready to
formally establish the connection between the changing
parameters of distributions and the outcome of KPCA
performed on their kernel mean embeddings:

Theorem 1 Let P

(1)
X|Y=c, ..., P

(M)
X|Y=c be probability dis-

tributions with d identifiable changing parameters ⇥d =
✓1, .., ✓d, and ⇠1, ..., ⇠q be principal components resulting

from KPCA with kernel kµ on kernel mean embeddings

µ

(1)
X|Y=c...µ

(M)
X|Y=c. If k and kµ are characteristic ker-

nels, then ⇠1, ..., ⇠q are a one-to-one mapping of the

d changing parameters (i.e. ⇠1, .., ⇠q = f(✓1, ..., ✓d),
where f is a bijective mapping.)

Proof: The characteristic property of kernel k and
identifiability of parameters ✓1, ..., ✓d imply that
⇥(1)

d 6= ⇥(2)
d =) µ

(1)
X|Y=c 6= µ

(2)
X|y=c for the KMEs of

two distributions P

(1)
X|Y=c and P

(2)
X|Y=c, where ⇥(1)

d and

⇥(2)
d are their respective realizations of the d param-

eters. Performing KPCA on µ

(1)
X|y=c...µ

(M)
X|y=c using

kernel kµ results in non-zero eigenvalues �1, ...,�q. An
important observation is that for a particular µ

(i)
X|Y=c,

its principal components corresponding to the non-zero
eigenvalues, given by ⇠

(i)
1,c, ..., ⇠

(i)
q,c are a function of

µ

(i)
X|Y=c (i.e. ⇠

(i)
1,c, ..., ⇠

(i)
q,c = g(µ(i)

X|Y=c)). Therefore,
it suffices to show that g is a one-to-one function.
By the characteristic property of kµ, it follows
that ⇥(1)

d 6= ⇥(2)
d =) �(µ(1)

X|Y=c) 6= �(µ(2)
X|Y=c),

and �(µ(1)
X|Y=c), ...,�(µ

(M)
X|Y=c) are points in a

q-dimensional subspace in Hkµ . Since KPCA per-
forms linear PCA on infinite-dimensional points
�(µ(1)

X|Y=c), ...,�(µ
(M)
X|Y=c), by Lemma 2, �(µ(1)

X|Y=c) 6=
�(µ(2)

X|Y=c) () ⇠

(1)
1,c , ..., ⇠

(1)
q,c 6= ⇠

(2)
1,c , ..., ⇠

(2)
q,c , so

g is a one-to-one function. This means that
⇥(1)

d 6= ⇥(2)
d =) ⇠

(1)
1,c , ..., ⇠

(1)
q,c 6= ⇠

(2)
1,c , ..., ⇠

(2)
q,c , implying

that f is a composition of one-to-one functions, and is
itself a one-to-one function.⇤

By establishing this one-to-one correspondence
between the d changing parameters and the q principal
components of KPCA, we have shown that the
resulting q-dimensional manifold contains valuable
low-dimensional information regarding the change of a
particular factor of the joint distribution (in the proof
treated as PX|Y=c) across source domains i = 1, ...,M .

3 ALGORITHM

Now that we have a way of representing the changes
of distributions across domains, we can use them to
reconstruct the factors of the joint distribution in the
target domain that will be used for classification. Given
class labels c = 1, ..., C, the first step of the algorithm
is to reconstruct the marginal distribution P

T
X by using

the q-dimensional manifold of change across domains,
such that the relevant factors are identified. The second
step uses the reconstructed components P

T
Y and P

T
X|Y

from the reconstructed marginal distribution in order to
calculate P

T
Y |X and thus do classification in the target

domain.

3.1 RECONSTRUCTION IN THE
TARGET DOMAIN

The main objective of our method is to identify the two
factors of the joint distribution: P

T
X|Y=c and P

T
Y=c, 8c.

All of the information about these two factors is con-
tained in the marginal distribution of the target-domain
P

T
X =

PC
c=1 P

T (X|y = c)P T (Y = c). Since we have
access to unlabeled data points xT

1 , ...,x
T
nt

in the target
domain, we can estimate the marginal distribution P̂

T
X ,

and search for factors P̂new(X|y = c) and P̂

new(Y = c)
that best reconstruct the marginal distribution estimate
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in terms of: P̂

new
X =

PC
c=1 P̂

new(X|y = c)P̂new(Y =
c). Thus, we aim to find the respective factors which
minimize a distance metric d(P̂ T

X , P̂

new
X )

A computationally and statistically efficient procedure
for minimization of the distance between the recon-
structed and true marginal distribution is via Maxi-
mum Mean Discrepancy (MMD): ||µT

X�µ

new
X ||2, where

µ

T
X and µ

new
X are the kernel mean embeddings of P T

X
and P

new
X respectively [30].

We parameterize conditional distribution mean em-
bedding in the target domain as µ

new
X|Y=c =

EX⇠PT
X
[�c(x) (x)], where �c(x) represents the class-

specific density ratio P

T
X|Y=c/P

T
X which needs to be

learned. Here,  is the feature transform into Hilbert
space corresponding to the Gaussian kernel or another
characteristic kernel, while for the label Y we have
a feature map ⇢(y) corresponding to the Kronecker
Delta kernel k(x, y) = �(x, y), so the kernel mean em-
bedding for the label is µY = EY⇠PT

Y
[⇢(y)]. For pos-

sible labels y = 1, .., C, the feature map of this kernel
is the standard basis ⇢(y) = eY and the correspond-
ing kernel mean embedding is: µY = EY⇠PT

Y
[⇢(y)] =

[PY=1, ..., PY=C ].
In addition to this parameterization of the target do-
main, we are also given a q-dimensional manifold in Hk
of the changing parameters of PX|Y=c across domains.
We minimize the maximum mean discrepancy (MMD)
[30] between the marginal distribution of the target
domain and its reconstruction µ

new
X|Y=c, such that the re-

construction is as close as possible to the q-dimensional
manifold. For this purpose, we introduce the following
minimization criterion, given in population version:

min
�,µY

||µT
X

� Unew

X|Y µ

new

Y

||2

() min
�,µY

||µT
X

�
CX

c=1

µ

new

X|Y =c

(µ
Y

)
c

||2 (2)

() min
�,µY

||µT
X

�
CX

c=1

E
X⇠P

T
X
[�

c

(x) (x)](µ
Y

)
c

||2 (3)

s.t.
CX

c=1

||�(µnew

X|Y =c

)� P

q

�(µnew

X|Y =c

)||2  ✏ (4)

�

c

(x) � 0,E
X⇠P

T
X
[�

c

(x)] = 1 8c (5)

In the first constraint, (4), � represents an addi-
tional feature map corresponding to the Gaussian
kernel kµ (which we also use to perform Kernel
PCA), and we use Pq�(µ̂new

X|Y=c) to represent the re-
construction of µnew

X|Y=c onto the q-dimensional man-
ifold described by the principal components of the
source domains (µ1

X|Y=c, ..., µ
M
X|Y=c) in the Gaussian

Kernel feature space. Namely, if v1, ...,vq are the
eigenvectors corresponding to the nonzero eigenval-
ues in that feature space, then we let ⇠newk,c = (vk ·
�(µ̂new

X|Y=c)) =
PM

i=1 ↵
k
i,ckµ(µ̂

new
X|Y=c, µ̂

(i)
X|Y=c) be the

projection of µ̂new
X|Y=c on the k-th principal component,

where ↵↵↵C vectors are eigenvectors of the centered Gaus-
sian Kernel Gram Matrix K̃ which was used to per-
form Kernel PCA on the source domains [33]. Then
Pq�(µnew

X|Y=c) =
Pn

k=1 ⇠kvk, and the k-th eigenvector
vk can be expressed as the following linear combina-
tion: vk =

PM
l=1 ↵

k
i,c�(µ

i
X|Y=c). One should note that

for each class label c we try to identify a separate low-
dimensional manifold corresponding to the conditional
distributions P

(i)
X|Y=c of the source domains, and the

regularizer penalizes the sum of reconstruction errors
across all label-specific manifolds.
The last two constraints, given in (5), ensure that
P

T
X|Y=c = �c(x)P T

X is a valid distribution. The empiri-
cal version of the objective is:

min
B,�

�

�

||µ̂T
X

� Ûnew

X|Y µ̂

new

Y

||2 (6)

() min
B,�

�

�

||µ̂T
X

�
CX

c=1

�

�

�

j

1
nT

nTX

i=1

B
ic

 (xT
i

)||2 (7)

s.t.
CX

c=1

||�(µ̂new

X|Y =c

)� P

q

�(µ̂new

X|Y =c

)||2  ✏ (8)

B
ic

2 [0, B
max

] and |
nTX

i=1

B
ic

| = nT , (9)

8c 2 1, 2, . . . , C. (10)

Here, B 2 RnT ⇥C contain the re-weighting coefficients
that help reconstruct (estimate) the target conditional
distribution given a specific class c: P̂

T
X|Y=c = B:,cP̂

T
X .

�

�

� is used to estimate class probabilities (given by P̂

T
Y ,

as a result of applying the Kronecker Delta Kernel
feature map) across all source domains, resulting in a
new estimated marginal class probability in the target
domain: P̂

new
Y=c = �

�

�c.
In order to make sure that B is a smooth function of
the data, we reparameterize it as in [1]; namely, we let
B = RA where R = KB(KB + �BI)�1, where KB is
calculated using the Gaussian kernel with a separate
width parameter �B, and regularized with a separate
�B . We then minimize over A 2 RnT ⇥K instead. After
incorporating this reparameterization and putting the
objective in Lagrange form, we have:

min
A,�

�

�

||µ̂T
X

� Ûnew

X|Y µ̂

new

Y

||2+

�

f

(
CX

c=1

||�(µ̂new

X|Y =c

)� P

q

�(µ̂new

X|Y =c

)||2)

() min
A,�

�

�

||µ̂T
X

�
CX

c=1

�

�

�

c

1
nT

nTX

i=1

(RA)
ic

 (xT
i

)||2+ (11)

�

f

(
CX

c=1

||�(µ̂new

X|Y =c

)� P

q

�(µ̂new

X|Y =c

)||2) (12)

s.t. (RA)
ic

2 [0, B
max

] and |
nTX

i=1

(RA)
ic

| = nT .
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We use alternating optimization for this task; optimiz-
ing w.r.t ��� is a straight-forward quadratic programming
problem and optimizing w.r.t A can be done using a
barrier method. (For details see the supplementary
materials). The procedure is outlined in Algorithm 1.

3.2 GENERATIVE CLASSIFIER

Once we have the key components of the joint distribu-
tion in the target domain, we can perform classification
in the target domain. The probability of the label given
the data is

P̂

T
Y (yi = c|xT ) =

ˆ
P

new
Y (yi = c)P̂new(xT |yi = c)

P

T
X (xT )

= ˆ
P

new
Y (Yi = c)Bic (13)

We test the efficacy of this approach in the following
section.

Algorithm 1 Classification Routine for Data-Driven
Multi-Source Domain Adaptation
Input: (1) M source domains with ni labeled train-

ing data-points: (x1, y1), ..., (xni , yni) ⇠ P

(i)
XY 8i 2

1, ...,M .
(2) A target domain with unlabeled data-points:
x1, ..., xnT ⇠ P

T
X

Output: predicted class labels in target domain: ŷ

1: while not converged do
2: Solve MMD problem given by (11) for ��� using

quadratic programming.
3: Solve MMD problem given by (11) for A using

barrier method.
4: end while
5: B = RA,
6: Return P̂

T
Y (yi = c|xi) = �

�

�cBic, 8i 2 1, ..., nT ,
8c 2 1, ..., C.

3.3 IDENTIFIABILITY OF TARGET
CONDITIONAL DISTRIBUTION

The above algorithm identifies the separate compo-
nents PX|Y and PY while reconstructing the marginal
distribution PX . Before presenting the identifiability
result, we make some assumptions:

A1: For each value of c, the distribution PX|Y=c has
only a finite number of parameters that change across
possible domains. Suppose we have enough source do-
mains, and let q be the number of non-zero eigenvalues
of Gram matrix on µX|Y=c across all source domains.

Assumption A1 implies that there exists a nonlinear
one-to-one transformation h : PX|Y ! Rq. Then, the
conditional distribution in each domain j is a linear
combination of the other domains after such a transfor-
mation: h(P (j)

X|Y=c) =
PM

i=1,i 6=j ⌘
j
ich(P

(i)
X|Y=c) for some

weights ⌘j1c, .., ⌘
j
Mc. Furthermore, for the target domain

T , 9 ⌘⌘⌘⇤c s.t. h(P T
X|Y=c) =

PM
i=1,i 6=j ⌘

⇤
ich(P

(i)
X|Y=c). In

other words, all domain-specific conditional distribu-
tions for label c lie in a q-dimensional subspace of Hµ.
This means that each conditional distribution corre-
sponding to domain j can be uniquely determined by
the mixture weights ⌘j1c, .., ⌘

j
Mc.

A2: Let P

⌘⌘⌘c

X|Y=c be a distribution determined

by weights ⌘

⌘

⌘c, and P

⌘⌘⌘0
c

X|Y=c be determined by
⌘

⌘

⌘

0
c. Then the elements of the set {p1cP⌘⌘⌘c

X|Y=c +

p2cP
⌘⌘⌘0
c

X|Y=c; c = 1, .., C} are linearly independent for
8⌘⌘⌘c,⌘⌘⌘0c, p1c, p2c, p21c + p

2
2c 6= 0.

We can now state the following identifiability theorem:

Theorem 2 Let A1 and A2 hold, and ⌘̂c be the weights

such that P

new
X|Y=c = P

⌘̂⌘⌘c

X|Y=c is the reconstructed dis-

tribution, namely P

new
X|Y=c = B:,cP

T
X . If 9 ⌘̂

⌘

⌘c s.t

P

T
X =

PC
c=1 P

new
Y (Y = c)P ⌘̂⌘⌘c

X|Y=c =
PC

c=1 ���cP
⌘̂⌘⌘c

X|Y=c,

then we have 8 c, P

T
Y (Y = c) = �

�

�c and

P

⌘̂⌘⌘c

X|Y=c = P

T
X|Y=c.

4 EMPIRICAL RESULTS

4.1 BASELINES

We consider several baselines that can be used to per-
form classification in the target domain using data from
multiple source domains:
(1) The simplest and most straightforward approach
is to combine the data from all source domains and
treat it as if it arose from a single joint distribution
PXY and use it for training via SVM. This approach
is called “poolSVM”.

(2) The method introduced by [24], in which the target-
domain conditional distribution P

T
Y |X is represented as

a linear mixture of the source-domain marginal distri-
butions, P T

Y |X =
PM

i=1 �iP
(i)
Y |X , where the weights are

functions of the marginal distributions of the source
domain, namely �i =

↵̃iP
(i)
XPM

q=1 ↵̃qP
(q)
X

. When they intro-

duced the method, [24] used uniform weights ↵̃i =
1
M8i 2 1, ...,M . As described in [2], the weights can also

be learned using a kernel mean matching approach,
such that

PM
i=1 ↵̃iP

(i)
X is as close to P

T
X as possible (we

refer to this approach as “dist-weight”).

(3) Treating the target conditional distribution as a
uniform mixture of the source-domain conditional dis-
tributions, P

T
X|Y = 1

M

PM
i=1 P

(i)
X|Y . We refer to this

baseline as "uniform". This method is proven to be
optimal when X ! Y and PX stays the same (shown
in [2, Proposition 1]).
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(4) The algorithm proposed by [2] which, like our ap-
proach, assumes the generative process Y ! X, and
aims to use the relevant low-dimensional factors PY

and PX|Y , where the kernel mean embedding of PX|Y
in the target domain is a linear mixture of the ker-
nel mean embeddings in the source domains, namely:
µ

T
X|Y=c =

PM
i=1 �iµ

(i)
X|Y=c. The mixing weights are

learned jointly with P

T
Y , and this information is used

to do distribution-weighted combination of the classi-
fiers in the source domains, like in the method by [24].
We denote this method by "dist-comb".

(5) The method proposed by [28], which uses a kernel
SVM approach. The authors used the canonical SVM
framework with a product kernel which, in addition to
comparing data points, also compares marginal distribu-
tions across domains. This kernel is given by a product
of two kernel functions: kB((P

(i)
X Xiq), (P

(j)
X , Xjl)) =

kP (P
(i)
X , P

(j)
X )kX(Xiq, Xjl) between two points Xiq and

Xjl of domains i and j. Here, kP is a characteristic
kernel that operates on probability distributions, and
kX is a kernel applied directly on the data points. We
refer to this method as "marg-kernel".

4.2 SYNTHETIC DATASETS

In order to test the effectiveness of our proposed
method, we perform the task of handwritten digit recon-
gition on the MNIST [34] dataset. This task satisfies
the assumption of the generative process Y ! X, and
is thus suitable for application of our approach. We
performed two classification tasks; in the first one we
classify digits 4 and 9, and in the second one we try
to discern between digits 1 and 7. For each task, we
create a multiple-source domain adaptation setting,
where each domain represents a rotation of a digit
with a different angle. We establish 20 such angles,
with the difference of two adjacent domains (angles)
being 18 degrees . Thus, in this setting, rotation is
the only changing parameter across domains. Because
of the choice of the changing parameter, this dataset
violates the commonly required assumption that the
target domain must be contained in the support of
the source-domain joint distributions. We conduct 20
experiments, where each angle is treated as a target
domain, and 10 other source angles are sampled ran-
domly, while ensuring that the nearest source angle is
at least 36 degrees away from the target. We sample
350 points for each source domain and the target do-
main. Because the dimensionality of images is high and
we used a very simple approach to reduce it, we fixed
P (Y = c) to range between 0.2 and 0.8 for the two
classes in order to prevent instability when estimating
PX|Y /PX in our generative approach via MMD.

We present the accuracies of all the baselines and the
proposed method (termed "generative") in Figures 2

and 3, for the classification of digits "4" vs. "9" and
"1" vs. "7" respectively. In addition, we also provide
the average accuracy together with standard deviations
and Wilcoxon signed rank tests in Table 2.
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Figure 2: Accuracies of the baselines and the proposed
method for the task of classifying between digits 4 and
9, for handwritten digit recognition
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Figure 3: Accuracies of the baselines and the proposed
method for the task of classifying between digits 1 and
7, for handwritten digit recognition

From the figures, one can see that the proposed method
outperforms all the baselines. In particular, this per-
formance gap is drastic in the task with digits 4 and
9, where the digits are difficult to classify and there is
no possibility for support overlap between the source
and target domains because of reflexion. It demon-
strates that our method is capable of utilizing the
one-dimensional rotational changes across domains to
perform classification on datasets with a complex deci-
sion boundary.

4.3 REAL DATASET

We also applied our method to lung phenotype data
(CT images) from the COPDGene cohort, which is a
public dataset for lung disease study. The task here is
to detect the fissure between two lung lobes, which is
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dist-comb dist-weight simple-adapt uniform poolSVM marg-kernel generative
MNIST 4/9

% accuracy 55.6391(4.43) 58.0(4.8) 54.0 (3.4) 51.4 (1.8) 57.93 (15.9) 58.0 (17.0) 65.8 (9)

p-value 0.0006 0.0033 0.0003 0.0001 0.0795 0.0766 –
MNIST 1/7
% accuracy 76.81 (7.4) 76.76 (7.7) 72.0 (8) 64.96 (8.8) 77.74 (8.8) 77.72(12.3) 84.4 (2.7)

p-value 0.01 0.009 0.001 0.0003 0.035 0.035 –
Medical

% accuracy 75.07(14.4) 79.39 (15.0) 81.76 (14.2) 81.75 (13) 76.7 (13.9) 81.41 (14.7) 85.62 (7.4)

p-value 0.0002 0.015 0.07 0.05 0.0005 0.08 –

Table 2: Accuracies and p values for Wilcoxon signed rank test across the baselines and the proposed method
performed on: the MNIST dataset where we classify 4 vs. 9 (top), he MNIST dataset where we classify 1 vs. 7
(top), and the real dataset from lung lobe images (bottom). The p-values displayed are comparing the proposed
method with each respective baseline.

a binary classification problem. This task is an impor-
tant intermediate step towards understanding which
genes are responsible for certain lung diseases. The
fissure is represented by a 3D point set obtained by
the method proposed in [35] and further refined by
manual annotations. The goal is to classify whether
the 3D points belong to one fissure region or another
(represented by the positive and negative labels). Since
the lung and fissure shape varies from patient to pa-
tient, the distributions of the points for the two fissures
change across different patients. Furthermore, since
labeling the points is costly and expensive, it would be
very useful to be able to learn an optimal classifier on
lung image data for a target patient by using existing
labeled data from a few other patients by applying our
method.

We conducted 40 experiments, in which randomly
picked 7 source patients, and for each experiment we
randomly sampled a target patient. We then subsam-
pled 250 points for each patient (domain), such that
P (Y = 1) varies uniformly between 0.2 and 0.8 across
all patients (both sources and target) for each exper-
iment. We then performed classification using the
generative method in each of the 40 target patients,
and we present the accuracies in Figure 4 and Table 2.
From these real dataset experiments, we see that our
method outperforms all of the baselines. We also note
that all of the baselines have a much higher variance
probably due to larger differences between the distribu-
tions of the target patient and source patients in some
of the experiments.

5 CONCLUSION

We developed a data-driven method to discover and
utilize low-dimensional changes of the joint distribu-
tion across domains for the purpose of domain adapta-
tion. We did so by representing and exploiting the low-
dimensionality of the change of the causal mechanism
PX|Y across source domains. Out approach consists of
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Figure 4: Accuracies of the baselines and the proposed
method for the task of classifying between two different
lung fissures in the real dataset

two steps: (1) reconstructing the marginal distribution
in the target-domain P

T
X such that P

T
X|Y=c and P

T
Y

can be identified, and (2) using the reconstructed joint
distribution in the target domain to perform classifica-
tion. We have proven that this method is theoretically
well grounded and have demonstrated its increased ef-
ficacy compared to the baselines via synthetic and real
data experiments. We believe that this method opens
the door for more flexible and principled data-driven
approaches to domain adaptation.
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